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We perform isobaric-isothermal molecular dynamics simulations of partially nigikanes of length 1010
carbon atomsand 32, respectively. All bonds are considered as rigid. For these systems we compare molecular
and atomic scaling to control the pressure in the Nasdersen simulation schenii§. Nose J. Chem. Phys.
81, 511 (1984; H. C. Andersen,bid. 72, 2384 (1980]. Atomic scaling in the presence of geometrical
constraints means coupling all available degrees of freedom to the pressure bath, keeping the desired isobaric-
isothermal ensemble, and satisfying at the same time the geometrical constraints. The corresponding equations
of motion have been derived recenflg. R. Kneller and T. Miders, Phys. Rev. B4, 6825 (1996]. In
contrast, no intramolecular degrees of freedom but only the center-of-mass positions are coupled to the pres-
sure bath when the well established molecular scaling is applied. We demonstrate that coupling the intramo-
lecular degrees of freedom to the volume dynantars equivalently, to the pressure bagirongly improves
the relaxation of energy and volume for the long chains, while for the short chains atomic and molecular
scalings are more or less equivalent in this respect. For the long chains we show explicitly that the barostat
couples to intramolecular breathing modes when atomic scaling is used. The frequencies of these modes are
found to be in excellent agreement with results from neutron scattering experiments.
[S1063-651X98)02511-2

PACS numbd(s): 02.70.Ns, 31.15.Qg, 36.20r

[. INTRODUCTION barostat(molecular scaling or center-of-mass scalii§g].
The c.m. positions can be obviously scaled without violating

In 1980 Andersen introduced tiextended systemethod internal constraints. However, it can be expected that such a
in order to perform molecular dynamics simulations in theprocedure becomes more and more inefficient with increas-
isobaric-isoenthalpic ensembld]. Nose showed that this ing size and decreasing number of simulated molecules. In
concept also allows one to simulate the dynamics in théhe extreme case of a single very long macromolecule in a
isobaric-isothermal ensemHI2], which corresponds to most simulation box pressure control by center-of-mass scaling
experimental situations. While the original methods bycannot be applied at all. In contrast to pressure control, tem-
Andersen and Noseere designed for simulations of simple perature control by a Nosthermostat can be straightfor-
liquids, the generalization to the case of partially rigid mol-wardly combined with geometrical constraints, such that all
ecules has been the subject of series of works in the pasiegrees of freedom respond to the thermostat. Coupling only
[3-10. In contrast to atomic fluids, macromolecules arethe c.m. momenta to the heat bath is known to be an ineffi-
modeled mostly as semiflexible systems. Rigid covalentient procedure. Coupling as many degrees of freedom as
bonds are the most common examples for geometrical corpossible to the thermostat improves the response of the sys-
straints that restrict the flexibility. The main reason to applytem to temperature steering. The same is also desired for
such constraints is that the computational efficiency is augAndersen’s barostat. Obviously, the partial rigidity of mol-
mented by up to a factor of 4 avoiding the sampling of high-ecules allows them still to adapt their internal geometry to an
frequency motion$l1]. While the concept of partial rigidity applied pressure by changing the radius of gyration.
has the advantage of decreased computational costs, it also The basic idea ih3] was to incorporatall available de-
entails disadvantages such as more complicated equations @fees of freedom of geometrically constrained systems into
motion. the pressure control mechanism, while keeping the correct

In simulations of atomic liquids, Andersen’s pressure batiNPT ensemble. Intramolecular stress can be expected to be
scales uniformly all coordinates in order to steer the pressurmore efficiently dissipated in this way. Dirac's theory of
towards the desired value. Clearly, this procedure cannot beonstrained Hamiltonian dynamif$2] together with projec-
applied to partially rigid molecules without violating in- tor techniques has been used to generalize Andersen’s
tramolecular geometrical constraints, e.g., frozen bonds. Thiearostating mechanism in the presence of geometrical con-
standard approach to circumvent this difficulty is to couplestraints. It can be expected that intramolecular relaxation
only the centers of mas&.m) of the molecules to the mechanisms are important for pressure control in macromo-
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lecular systems with a larger proportion of internal degreesnomenta of the yth molecule, respectively. One has
of freedom, whereas the center-of-mass scaling procedune:(rI, .. .rE)T, wherer contains all the 8! Cartesian co-
can be applied without difficulties for systems consisting of aordinates of the N-particle system. From now on
large number of relatively small molecules. It is the purposem , =diag(m; ,m;,my, ... ,mym,) stands for the Bx3n
of this work to demonstrate these points and to elucidate thenass matrix of each single molecule. Each molecule is sub-
differences between the center-of-mass scaling proceduject to n, constraints such that=n.K. The | constraint
and the atomic scaling method. equations are now labeled as

The paper is organized as follows. In Sec. Il we specialize
the equations of motion for partially rigid molecules given in
[3] to the case of constraints that can be expressed as homo- ay(r))=0, a=1,...n;, y=1...K, (2
geneous functions of the Cartesian coordinates. The atomic
scaling method is then compared to the equations of motion . . . .
corresponding to the standard center-of-mass scaling procé‘—nd the equations of motion for atomic scaling read
dure. We then apply linear response thefdry] in order to
derive formulas for the energy dissipation spectra appropri- v
ate to describe the different response mechanisms to an ex- fsz;lpva il 3
ternally applied compression or dilatation. In that way the 3V
rate of energy dissipation can be related to the power spectra
of the instantaneous stress. In Sec. Ill we describe some tech-
nical details of the simulations of the alkane chains. In Sec.
IV the simulation results are analyzed, which are obtained by
the two different methods. Section V is devoted to a conclud-
ing discussion. In the Appendix we describe the integration

. v Voo
p,=f,+z,— Wpy— {p,— WHVM y Pys 4

scheme that has been used. V= &, ®)
Wy
Il. THEORY
A. Equations of motion :
f Pv=Phai— Pexi— {Pv, (6)
In the following we quote the results fof PT equations
of motion in the case of geometrical constraints for atomic 2
. ; ; . | — Py
and molecular scaling, respectively. We introduce notation (=— 2 PIM_p,+ — —(f+1)kgT . (7)
that simplifies the comparison for these different pressure Ws\ 5 777 Wy

control mechanisms.

The 3n-dimensional vector§, andz, comprise the potential
) ] ] forces and constraint forces acting on the atoms in molecule
The NPT equations of motion of alN-particle system ., yegpectively. As usuakgT is the Boltzmann constant
sub;ect t_ol geometrlca_l constraints presented here have beefines the absolute temperature @, is the external pres-
derived in[3]. Assu_mlng the equivalence of time and_ €N- syre imposed on the systeki,, andWs are adjustable iner-
semble averages, it has been shown that the equations @f narameters for the pressure and the temperature control,
motion generate trajectories corresponding to the des'reﬂespectively. The volume is denoted dsand py, is the as-
NPT ensemble. In the following we will use standard Car- gciated momentum. A special feature of the equations of

tesian coordinates instead of mass-weighted coordinates. Thgution is the appearance of the 8 3n matricesH ,, whose
relations between various quantities expressed in these tWQoments are given as v

coordinate systems have been given in Table 1 of F3f.

1. Atomic scaling

The geometrical constraints describing idealized chemical Py
structures as rigid bonds or planar rings can be cast in the (Hy)i,(:Z gwﬁ, ik=1,...,3. (8
general form a iy K,y
o*(r)=0, a=1,...). (1 Theg,, are related to Lagrangian multipliers associated

with the momentum constraints. Introducing the ma#ix
If N is the number of particles the constrairty leave f as
=3N—1 degrees of freedom for the configuration space of

the system. We restrict ourselves to a systerK afientical N do’ )

molecules. The generalization to a system of different types ~ (A,)i = a=1,...n;, i=1,....3, (9
of molecules is straightforward. Th€ individual molecules Y

are labeled by greek indiceg=1, ... K, and the atoms in

which collects the constraint gradients as row vectors, the
coefficientsg, , can be determined by solving the linear

. ; ; f i
scaling procedure, where different molecules are to be dlsg,ystem of equations]

o o . . . ) —1AT
tinguished, it is convenient to introduce tha-8imensional A, M} Algy = —A,r,.

subvectors , andp,,, collecting the Cartesian positions and b‘;'—'” (10
—ryL

each molecule by latin indices=1,...,n such thatN
=nK. To facilitate a comparison with the center-of-mass
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Here then.-dimensional vectog, contains the coefficients 3n Po Dy

J..,, andr., | is the projection of the position vector, on TH M 'p,=> 9., iy ary ™ ')y

the row space oA, . Correspondingly, the vectar,, with @ Lk Ly ky Wy kk
ryLr, . ,denotes the projection of, onto the tangent space 3 D

of the constraint surface, which is defined by E2). From => g, ynaZ y _Pky _q (15)
Eqg. (10 andr, =r,—r, , it follows immediately that a K Iy (My)ik

The second equality follows from the homogeneity of the
0, (11 constraint derivatives and the last equality is obtained from
the momentum constraintd2). In the following we will
always assume that we are dealing with homogeneous con-
i.e., 1, isin the null space of the matri&,. The appear- straints only. In that case the atomic version of the instanta-
ance of the matrit,, given in Eq.(8) is a consequence of npeous pressure reads
the momentum constraints that are to be explicitly imposed
in the extended system method. The time derivation of the 1
constraints(2) shows that the velocities., are in the null Piantg::_ 2 pTMilp +2 (42,1 (16)
) y 3V P YooY Y p” YNy Y
space ofA,, explicitly A,r,=0. In standardHamiltonian
(microcanonical dynamics the Cartesian momenta divided This is exactly what one would get for the pressure in the
by the corresponding masses are identical to the Cartesiarase of microcanonical dynamics with constraints. Note that

VelocitiesM;lpyzi’y and thus fulfill the constraints all forces, including the constraint forcgs, contribute to
the internal virial[15,16].

Ayr

Y=

71 _ .
AM, "p,=0. (12 2. Molecular scaling

In the case of molecular scaling only the centers of mass

It is necessary that the relatioi$2) remain valid also for of the molecules are coupled to the pressure bath, yielding a
equations of motion derived by the extended system methodlifferent form for the equations of motion. The three-
Otherwise the accessible phase space of the constrained sygimensional center-of-mass vector of molecyleand its
tem would not be correctly assigned, which would lead toconjugate momentum vector aR,=3'mr; /M and P,
systematic deviations in ensemble averages of quantities zi”pi‘y, respectively. HerdM,, denotes the total mass of
containing the momenta, e.g., the temperature or the pressuggch moleculeM ,=='m;, andr; , andp; , are the three-
[5]. This fact explains why only the parallel projections of gimensional Cartesian position and momentum vectors of
the positions',,, can appear in E3). atomi in moleculey. When the “piston momentum’py, is

Let us briefly consider the atomic pressure included in the thermostating procedure in the same way as
in Egs. (3)—(7) the equations of motion can be cast into the
form (compar€g 7,9])

1 _
Pﬁ\tg::w Z/: pTyMylpy . 1 Y
r,=M, pﬁWIRy, a7
V] )
T - -1 . vV M, IP
+§7: r\fy+z, zy My py)}. (13 py:fy_'—zy_w l\y/l Y _p,, (18)
It has been shown if3] that the term proportional to V= \I/OTV (19
r;H yM;lpy does not contribute to the average pressure. As v
we will show now, this term can be omitted if the constraints ) 1 pl—/py ;
can be written in the form pV:W[ Ey M +Ey RyFy] —Peoxi— ¢{py, (20
a a a 1 p2
o5(r,)=9%r,)—qg=0, (14) g:-(}) p;Mylpy—i——V—(f—Fl)kBT). (21)
Wl 5 Wy

whereqp is a fixed parameter amgf’(r,) is ahomogeneous  The (3nx 3)-dimensional matrix is introduced to take care

function of degreen,+1 in the coordinatesq“(Ar,)  of the correct dimensionality in the formulas relating vectors
=\"e*Ng(r ). The constraint derivatives themselves thatasr andR,,

appear in the matriXA,, are homogeneous functions of de-

green, . All standard constraints, such as bond constraints or 17 = [1“ . 1]
bond angle constraints, are such homogeneous constraints. It Nl
is even questionable whether other constraints are physically n times
meaningful. In the case of homogeneous constraints the terihere 1 is the 3<3 unit matrix. The molecular version of

r;H M _'p, vanishes identically, as can be seen by usinghe instantaneous pressure can be obtained from the equation

y : R
Euler’s formula for homogeneous functions of motion for py, writing py= Pm‘;{— Pexi— {Pv:

(22



PRE 58

TABLE I. Atomic scaling.

Virtual variable Real variable Connection
P, r, r,=V%p
™, P, p,= V 1’33’117
V \Y V=V
Ty Pv py=(my/s)
S s ss
dr dt ar= 97
s
_ ¢ _ 1lds
sdt
z,=AL(V*®3p ), z,=Alr)n, z,~z,
1 PP
mol Yy T
e +
Phe=av| 2 W, t & RF (23

, Is the total force on moleculy andF, =37f; y» Where
f .y Is the three-dimensional force vector acting on atam
moleculey.

B. Energy dissipation
Both sets of equations of motiof3)—(7) and (17)—(21)
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1. Hamiltonians

In order to relate the rate of energy or heat dissipation to
mechanical quantities, we start with the corresponding Nose
Andersen Hamiltoniang{ 2™ and %™ in terms ofvirtual
variables, since these virtual variables involve no implicit
volume dependence:

- 2 2
M, '11' T s
atm__ v 1/3
My ; V2/3 2 252Wv + 2W, FV{VEp,})
+PeyV+(f+1)kgTIns, (24
~Tp—1% T 2 2
Hmol=S mM, ", N ILIL, v, s
5 2s? M,2s2Vv23 ] 282w,  2Ws

+V{p,+ VAR D)+ PeyV+ (f+1)kgTIns.
(25

V stands for the potential energy,, is the virtual momen-
tum associated with the volume, as@nd 7 are the Nose
variable and its conjugate momentum, respectively. The vir-
tual Hamiltonian '™ corresponding to the atomic scaling
procedure depends @, ,m,, which are the virtual coordi-
nates and conjugate momenta respectively. In contrast, the
virtual Hamiltonian #™°' is formulated in terms of the

areconsistentvith the NP T ensemble. However, an efficient 3Nn-dimensional vectorpy and the three-dimensional vectors
simulation scheme should give a quick response to an extef?,, Which are the virtual variables associated wigative
nally applied perturbation in order to drive the system backand center-of-masscoordinates, respectively. The corre-
to equilibrium. The two simulation schemes presented hergponding momenta are denotedzgandIl,. The scaling
involve quite different response mechanisms. While in therules that connect these virtual variables with the physical
atomic scaling method all degrees of freedom are involved ifrea) coordinates and momenta are listed in Tables | and II.
the pressure steering, only the centers of mass respond di- From the above Hamiltonians and the constraints the vir-
rectly to local stress when the molecular scaling method isual equations of motion can be derived. To obtain the equa-
used. To quantify these differences we consider appropriatiéons of motion(3)—(7) and (17)—(21) the respective scaling
response functions in the framework of linear responseules are to be applied; this includes Nsséme scaling

theory[14].

procedurgTables | and ). As outlined in[3], in the case of

TABLE Il. Molecular scaling.

Virtual variable Real variable Connection
7’*/ FY ?V:BY
R, R, R,=V*eR,
=Py VIR,
;77 By py—S l"y
IL, P, P,=V 1M1,
p,= s*l{?-rﬁ M /M VY3
\Y \Y V=V
Y, Pv pv=(my/s)
s s s=s
dr dt dr
dt=—
s
- 14 _lds
" sdt

z,,= AP 1yt M IE,

2= AL )iy = AL )y

z,+M,IF /M =z,
whereF =37f;
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the atomic scaling procedure the proper set of constraintsow as independent new variables. Inserting the Hamilto-
must include the momentum constraints for the virtual mo-nians(29) and(30) into the action integral28) allows one to
menta consider anunconstrainedvariational problem. The virtual
equations of motion are then obtained in the standard forms
q"=dH*/dp, andp,=—dH*/9q” and the Lagrangian mul-
It follows then from the scaling relationg,= 5—1\/—1/311_7 tipliers are to be determined by the requirement that the re-

that the real momenta fulfill the proper constraift®) too. ~ SPective constraints are fulfilled.
In the case of the molecular scaling procedure it is not nec-
essary to include the momentum constraints explicitly. Since
the geometrically intramolecular constraints can always be Since the virtual Hamiltonian&29) and (30) are formu-

formulated in terms of the relative coordina@s only and lated in terms of the virtual variables that involve no implicit
since these relative coordinates do not interfere with th&/olume dependence, they are suitable to construct the proper
length scaling p,=T,,, wherer,, are the real positions rela- perturbation Hamiltonians corresponding to an externally ap-

) plied compression or dilatation. To describe such a perturba-
tive to the center of mass of molecuje compare Table )| i | in the Hamiltoniarg 2™ andH ™" th

the momentum constraints are automatically fulfilled and in 'on We replace in the Hami On"’fl v and’t, €

this sense redundant in the molecular scaling proceduré(.Olumev by its perturbed valuy’”,

However, the virtual variables corresponding to the relative

coordinates are not independent variables because they obey V=V =[1+a(7n)]V, (31
the equation

AM 7, =0. (26)

2. Response theory

n where the relative compression factefr) = (V' —V)/V de-

S mp =0 @27 pends on virtual time. Since we are interested in small per-

T turbations|:z(r)|<1, the corresponding perturbations of the

HamiltoniansAH 2™* (7) andAH ™°"* (7) can be obtained

wherep; ., is the virtual three-dimensional position vector of from the expression&29) and (30) by linearization with re-
atomi in molecule y relative to the center of mass. The Spect toa:
conditions (27) have to be considered as extra constraints . . . JOH: -2
when the virtual equations of motion are to be derived from Hy pere(T) = Hy + &)V BVU +0(&%). (32
Eq. (25 [7].

Collecting the respective virtual variables in the &gt} AH;
and all corresponding momenta in the $et}, where either When the respective connections between virtual and real
v=1,...,N+2 (atomic scaling or »=1,...,N+3K variables listed in Tables | and Il are applied, the perturba-

+2 (molecular scaling Hamiltonian equations for the re- tions AH®™* and AH™°"* can concisely be expressed in
spective virtual variables can be derived from the variationaterms of the real variables
principle

AHA™* = — (1) (PAN—Pey)V, (33
5S= 5f 1d7(2 d”pV—HU)=0, (28)

70

AH ™M = — (1) (Po— Pex) V. (39)

nates and momenta. Due to the respective set of constrain ere_the definitions of the mstgntaneous press(tgsand
the variations appearing in E(28) are not independent, In (29 [N terms of the real variables were used an(t)
order to take the constraints into account the new Hamilto= a(7(t)) may now be considered as a Ifumtion of real time.
niansH 3™* andH™°"* can be introduce{i3] Introducing the abbreviatioA= (P&t ™°'— P, )V, the re-
spective perturbation terms can be written A${* =
K K —a(t)A. For any function of the real variabl&; the devia-
atm% _ o satm__ T\/13 TAT \/13 tion due to the compression from its equilibrium va(ig
e e zy A py)/uerEy AN the unperturbed ensemb{eﬁB)(t)z(B)(t)—<B>e£lBZa?1
(29 be expressed as

where the velocities are to be expressed in terms of coord%

K K n

t
-~ - 5BY(t)=| dt'dga(t—t)a(t')+0(a?), (35
HTOI,*:HTOI_; U;(Py)ﬂy_; f‘;Z mp;. .- (30) < >( ) fﬁx BA( )a(t’) (a9) (395

whered g, is the linear response function. Evans and Holian
Here we introduced then.-dimensional vectorse,  have proved that the standard Kubo foft] for thelinear

:(U}/, ...,0™T.  The Lagrangian multipliers K, response functiori)BA still holds, even when the equations
B v - _ T 4 of motion are of NoséHoover type[17,18. Therefore, we
=By tingy) K= (Kayyokn ) ANd o the standard Kubo form of the linear response function

:(71/10,, ce ,ﬁnc,y)T and the three-dimensiondl, appear too. According to standard linear response theld4], the
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time-dependent linear response functichg, are given as 9Q
time correlation functions, which are to be evaluated in the r

=— c'yJ dt’ D aa(t)a(t—t")
unperturbedensemble 0

1 . : . .
Dpat) = — T (A0)B(D)eq- (36) = —%[Xoe"“’otxAA(onX’S e'“oyxa(wo)]. (37)
B

The difference in the response mechanisms for the atomiFIereXAA(w)zf‘Ejdt é“td 5 A(t) denotes the Fourier-Laplace

and the molecular scaling procedure rests on the differentansform of the response functioh,, describing the re-

perturbation variables, eithex® ™= (P{i5—Pe,)V or A" ghonse mechanism @ itself. The asterisk in Eq37) de-

= (Pfhet—PexdV. notes the complex conjugate and the overbar stands for a
Having dgstablished the gﬁneral |f02|m of the p_efturbaéitl)rtime average over the periodr2w,. Inserting in this ex-

corresponding to an externally applied compression or dilaz o ey _ i *

tation (33) and(34), we follow Kubo[14] in order to discuss Eererclj(i): C:rgze)(l(zf—/é[t;(:o%xr)i(elézotﬂxoeXprOt)] and

how the work done by the external perturbation can be dis- 9 9 Pi=lewo y

sipated as heat into the environment. Thermodynamically,

the average rate. of. ethaIpy |OSS(9(E+. PextV)/Qt quals 'Q:|xo|2@lm{XAA(w0)}- (38)

the rate of heat dissipatiarQ/Jt. Assuming for simplicity a 2

periodic (monochromatic compression factor «(t)

=Re{Xgexp(—iwgt)}, the average rate of heat dissipation Finally, the imaginary part of the complex susceptibility

over a cycle period 2/w, can be written as Im{xaa(w)} can be reformulated as
Im{xaa(w)} = / dt sin(wt)® au(t) = — / dt cos(wt) { A(0)A(t) ) o, . 39
4] QkBT —00
Iiayw)

This shows that the average rate of heat dissipation is praeero and all bond lengths were constrained. The first system
portional towZl (wo). Herel 5 (w) denotes the power spec- consists of 2561-decane moleculeg'short chains™) corre-
trum of A, given as the Fourier transform of the autocorre-sponding tof =5373 degrees of freedom. The second system
lation function ofA. In the following w is understood as the (“long chains”) consists of 8-alkanes, each containing 32
frequency of compression=w,. Thus the heat dissipation carbons(n-dotriacontangs This system corresponds tb
spectrum can be computed from the autocorrelation functior 5197 degrees of freedom. Both systems were prepared in a
of the respective propert%. The shape of the heat dissipa- nonequilibrium start configuration to observe relaxation into
tion spectrum indicates the frequency range contributing tequilibrium. For theNPT simulations of the decanes we
the dissipation of stress as a consequence of externally aptarted with an existing isotropic configuration of 256 mol-
plied compression or dilatation. Summarizing, we can sayecules that was then equilibrated in BVT simulation at
that in the case of atomic scaling the heat dissipation sped¢emperaturd =522 K and a box volum¥ =97.77 nni. Be-

pression is given by lecular scalingwe rescaled all velocities such that the initial
temperature wa$ =303 K, keeping the volume for the high-
Qatm(w)ocw2| atm_ (w) (40) temperature configuration. In view of the longer relaxation
{(Pinst PEXl)V} !

times to be expected for the long chains we prepared a con-
figuration supposedly somewhat closer to equilibrium. First
we constructed an “all-trans” configuration for the 80
chains. Then we heated the system agaif+b22 K, how-
ever adjusting the box volume to a value\6£67.28 nnj.

The heating phase was followed by BWT simulation of

Ill. MATERIALS AND METHODS 100 ps aff =303 K, keeping the same volume, before start-
ing the NPT simulations. The value of 67.28 finfor the
volume is an estimate that was obtained from Fig. 11i9]

Two different systems afi-alkane chains, each containing by extrapolating to a chain length 32. The simulations for the
2560 beads, have been simulated with the atomic and malifferent pressure baths started with exactly the same initial
lecular pressure baths described abéesir simulations in  configuration for the decanes and the dotriacontane chains.
total). In all NPT simulations the external temperature andBoth systems were simulated with the same force field and
pressure were fixed td=303K andP.,,=1 atm, respec- simulation parameters. A time step of 2 fs was used for in-
tively. The total momentum of the two systems was alwaydegrating the equations of motion. The relaxation time

whereasQm°(w) reads for molecular scaling

~mol 2
QM w)* w*l {(PM=Pey)

v}(w)- (41

Molecular dynamics simulation
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VOLUME RELAXATION LENNARD-JONES ENERGY RELAXATION
256 n-decanes 256 n-decanes
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97.0 | atomic scaling ] +11000.0 ! atomic scaling
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79.0 1 L 1 1 L 1 simulation time [ps]
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simulation time- [pe] FIG. 3. Relaxation of the Lennard-Jones energy of @8@cane

FIG. 1. Relaxation of the box volume of 256decane mol- Molecules as a function of simulation time. The gray solid curve
ecules as a function of simulation time. The gray solid curve cor-corresponds to atomic scaling, the black dashed curve corresponds
responds to atomic scaling, the black dashed curve corresponds @ molecular scaling.

molecular scaling.

smaller than a relative tolerance of 0 Except for the
determining the “Nosemass” Wg= (f +1)kgT75 was cho-  torsion potential, the force field was Toxvaerd’s united atom
sen to ber;=0.2ps. Andersen’s piston mass having theforce field for decanes described|it9]. The torsion poten-
physical dimension kg/fhcan also be formulated in terms of tial was that of Smith and Jaffe20], which has been ex-
a relaxation timewy = (f+1)kgT[ 72/V?(0)], whereV(0) ~ Panded into a polynomial in CO¥{yrsior). The coefficients of
is the initial volume. We fixed,, by choosingrp= 1.6 ps in this expansion can be found in Table |ﬁ21].. The torsion
all simulations. The equations of motion were integrated€nergies reported below were calculated ‘éV'thOUt use of the
with a modified velocity Verlet integrator. The algorithm for first coefficient corresponding {@os(Visio) I'=const. This
atomic scaling is described in detail in the Appendix. We@lters neither the forces nor the virial, but causes a shift in
used ten iterations each step for the iterative pro¢esy the torsion potential. To mimic an infinite system, cubic pe-
described in the Appendix. Possibly fewer iterations couldiodic boundary conditions were applied. Since we applied
also be used. For the molecular scaling method the velocitydWways the atomic version of periodic boundary conditions
dependent acceleration terms in the equations of motion hal€2); Special care was taken when the molecular virial was
also been treated iteratively, very similarly to the scheme fofomputed. As described 9], the molecular virial can be
the atomic scaling described in the Appendix. The boncfOmputed in a way consistent witatomig periodic bound-

length constraints were considered to be fulfilled for errorsaries as ,R,- Fy=Ei'y<j5(riN,/'yl-5—?i,,/+?j,§)~fi y.js- The

summation on the right-hand side runs over all pairs of at-
VOLUME RELAXATION

o 80 n-dotriacontanes LENNARD-JONES ENERGY RELAXATION

80 n-dotriacontanes

atomic scaling -16750.0
68.0 - -~~~ molecular scaling

atomic scaling
-16950.0 molecular scaling

-17150.0
-17350.0 [ i
-17550.0 |-

-17750.0

box volume [nm’]

V., [kJ/mol]

-17950.0 |

-18150.0

-18350.0

-18550.0

64.0

0.0 200.0 400.0 600.0 800.0 10000  1200.0 18780.00

200.0 400.0 600.0 800.0 1000.0 1200.0
simulation time [ps]

simulation time [ps]

FIG. 2. Relaxation of the box volume of 8@dotriacontane FIG. 4. Relaxation of the Lennard-Jones energy of 80
molecules as a function of simulation time. The gray solid curvedotriacontane molecules as a function of simulation time. The gray
corresponds to atomic scaling, the black dashed curve correspondslid curve corresponds to atomic scaling, the black dashed curve
to molecular scaling. corresponds to molecular scaling.
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TORSION and BENDING ANGLE ENERGY RELAXATION TABLE Ill. Averages for 256n-decane molecules @gH,,) at
256 n-decanes T=303K and Pext=1 atm.
60000 -~ molecular scaling | Averaged quantity Atomic scaling Molecular scaling
5500.0 | volumeV (nnr) 81.6+0.58 81.6-0.56
g | Vi (kd/mo) —14212.6:114.4 —14220.6-115.7
i Viorsion (kJ/mo) 4090.9+95.3 4110.992.8
S Voending(kJ/mo) 2598.6-73.2 2601.372.9
= enthalpy
% E+ PgyV (kd/mol) —746.7-228.3 —731.3+210.9
R

analysis of equilibrium propertie@verages, power spectra,

| and energy dissipation spectrarhis time interval corre-
sponds to 2*=8192 data points written out every 20 fs and
thus enabled us to use the fast Fourier transform technique

FIG. 5. Relaxation of the torsion enerdypper curvesand  for the computation of the spectra discussed in Sec. Il B. For

bending angle energ§jower curves of 256 n-decane molecules as the longer n-dotriacontane chaing32 beads the system

a function of simulation time. The gray solid curves correspond toneeded a much longer equilibration time. The total simula-

atomic scaling, the black dashed curves correspond to moleculaton length(for each pressure bathere was 1.2 ns. From the

scaling. last 327.68 ps corresponding td*2 16 384 data points, we

computed all the listed equilibrium properties.

or
I

250001&
i

I
2000.0
0.0

50.0 100.0 150.0 200.0 250.0 300.0
simulation time [ps]

oms for which atom and atomj are in different molecules
(v# 6) and the superscripd| denotes the three-dimensional
nearest image distance vecndf'j(; between atomsy and

15 whiler;,, is the three-dimensional position vector of atom Figures 1 and 2 show equilibration curves of the simu-

i in moleculey relative to the center of mass of molecyle  |ated box volume as a function of time. While the volume of
No long-range corrections, for either the pressure or the ente short chainé256 n-decanekin Fig. 1 equilibrates during
ergies were taken into account; instead we used a relativelyye first tens of picoseconds, the volume of the longer chains
large cutoff distance of 1.6 nm, which corresponds to MOrggo n-dotriacontanesin Fig. 2 needs hundreds of picosec-
than 4r, where o denotes the length diameter in the onds to attain a stable limit. Visualization of the structures of
Lennard-Jones potential. This is considered to be a reasofhe simulated systems shows that the 32 carbon chains are
ably accurate approximation for nonpolar systd@@]. The  more or less aligned in parallel @=303 K andPe,=1
Verlet neighbor list technique was applied, using a shell raztm, with an intramolecular zigzag conformation. In contrast,
dius of 1.969 nm for all beads in the pair list, which washe decanes form an isotropic fluid. This is consistent with
updatgd every ten simulation steps. The system of decangse experimental observatiof4] that the alkane chains
was simulated for 330 ps, using the last 163.84 ps for thgrom |ength 16 on start to form a wax under normal condi-
tions, where the single chains are ordered in parallel lamel-
lae. The following figures show the energy relaxation behav-
ior: The relaxation of the Lennard-Jones energies is shown in
Figs. 3 and 4 for the short and long chains, respectively.
Similarly to the volume relaxation, the Lennard-Jones ener-
gies of the decanes equilibrate much faster. Again, hundreds
of picoseconds are needed for the 32-alkanes. In Figs. 5 and
6 we show the relaxations for the torsion and bond angle
energies corresponding to Figs. 3 and 4, respectively. In

IV. RESULTS AND DISCUSSION

TORSION and BENDING ANGLE ENERGY RELAXATION

80 n-dotriacontanes
4500.0 l § T T

|

| atomic scaling ‘

43000 . molecular scaling |
‘ |
]

4100.0

3900.0 |}

[kJ/mol]

3700.0

S 35000 Tables lll and IV we list the averages of various quantities of
E 3300.0
2 31000 i TABLE IV. Averages for 80n-dotriacontanes (£Hge) at T
j 29000 =303 K andP.,;=1 atm.

2700.0 ’ Fre m Averaged quantity Atomic scaling Molecular scaling

‘ . ‘ ‘ A |
2500004 200.0 4000 6000 800.0 1000.0 1200.0 volumeV (nm3) 65.01+0.32 65.472-0.35
smutaton tme [ Vi, (kdimol ~18264.1-92.6  —17926.5:92.9

FIG. 6. Relaxation of the torsion enerdypper curvesand  Viorsion KJ/mol 3319.@92.9 3610.6:92.4
bending angle energflower curve$ of 80 n-dotriacontane mol-  Vyenging (kJ/mol) 2807.775.5 2868.6:78.2
ecules as a function of simulation time. The gray solid curves corenthalpy
respond to atomic scaling, the black dashed curves correspond to E+ P,V (kJ/mo)  —5601.5-218.1 —4893.2:214.5

molecular scaling.
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ATOMIC and MOLECULAR PRESSURES ATOMIC and MOLECULAR PRESSURES
80 n-dotriacontanes, MOLECULAR SCALING 256 n—decanes, MOLECULAR SCALING
250.0 T T T - T
30 - | atomic pressure P*™

200.0 - molecular pressure P™

25
150.0

20
100.0

£ =
8 500 £ 10
. & L
B 00 iy s e ik Z s
4 ' ki i »
Q [

-50.0 | 1 & 0

atomic pressure P*"
100.0 - - - - molecular pressure P™ _5
-150.0 -10
15
-200.0 s : : :
0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 2 ‘
simulation time  [ps] o 50 100 150 200 250 300

simulation time [ps]

FIG. 7. Molecular scaling for 8M-dotriacontane chains: run-
ning averages of the atomic pressygray solid curve and the
molecular pressurgblack dashed curyes a function of time. Each
point in the figure corresponds to an average over 20 ps.

FIG. 9. Molecular scaling for 256-decane chains: running av-
erages of the atomic pressuigray solid curve¢ and the molecular
pressurgblack dashed curyeas a function of time. Each point in
the figure corresponds to an average over 20 ps.

the simulated systems. differences and the difference P,V are very small com-

/As intuitively expected, differences between the relax-,.eq tg the large differences in the potential contributions.
ation curves and other quantities resulting from using mcga

lecul : i el n explanation for this large difference in the case of the
fecuk?r ?nd atﬁ"?'c scaling, gespectlvfe Ys bicofr_ne pronr?unch ng 32-bead chains is provided by Figs. 7 and 8. Here, both
or .t € 'ong chains. It can be seen romt e figures that theyeqqre definitions, thatomic pressure and thenolecular
main differences are between the atomic and the molecul

: . ressure, are depicted as running averages during the simu-
scaling methods_ in the case of thg long 32 ca.rb@ghkanes, lations. Each plotted point corresponds to an average over 20
There are significant differences in the contributions to th

. . . eps. Such an averaging procedure for obtaining the figures is
potential energy. Generally, the atomic scaling method Prog, cessary due to the strong noise in the pressure signal. As

duced_lo(;/_ver _enefrgua%s on avlerage_z, Wh'ﬁh mayl be Eorpadgz_; n be seen, the molecular scaling method produces atomic
?S an |nb|cat|on ohr aster re ax?tlon. -I;j itOta Ient Ia Py ; ressures that are systematically larger than the controlled
erence between the atomic scaling and the molecular scalifg,ecylar pressure. Only the directly controlled molecular

method for the 32-alkanes amounts to 708 kJ/mol, where ressurgcompare the equations of motidh7)—(21)] fluc-

for the decanes this difference is only 15 kd/mol. The totaky,te around the prescribed external pressure of 1 atm. Since
enthalpy differences are very close to the sum of the differy, pressure definitions must produce edquRIT ensemble

ences in the potential contributions since the kinetic energyerages; it is clear that the molecular scaling method fails to
reach theN P T equilibrium distribution, at least in the course

ATOMIC and MOLECULAR PRESSURES of the simulation time (1.2 nsThe situation is different for
2500 80 n-doiriacontanes, ATOMIC SCALING atomic scaling. Although a long relaxation tintepproxi-
' atomic mately 400 psis needed for convergence of the molecular
pressure P a
2000 -~~~ molecular pressure P™ pressure, both pressures fluctuate finally arofg,. The
1500 | ] decanes do not exhibit this behavior at @ée Figs. 9 and
10).
1000 ¢ 1 An explanation for these strong differences, in particular
500 | for the 32 carbon chains, is provided by the power spectra

0.0

pressure [atm]

b x'f -‘*?‘”%VWWWAVH ‘ WWMM‘; I () of (Pj,st— Pex)V and the corresponding heat dissipa-
L “AWM‘ . "%WW“ tion spectra given in Figs. 11-14. Their significance has

’ been discussed in Sec. Il B. For both simulated systems, the
256 decanes and the 80 dotriacontane chains, there are pro-

-50.0 LY !

ooy F nounced differences at higher frequencies between the
-150.0 —M‘J(“v'\\ atomic and the molecular scaling methods visible in the
2000 ! ‘ ‘ ‘ ‘ power spectrdsee Figs. 11 and }2These frequencie@p- _

0.0 200.0 4000 600.0 8000 10000 12000 proximately equal to 250 cit for the decanes and approxi-

simulation time [ps]

mately equal to 70 cmt for the dotriacontangscorrespond
FIG. 8. Atomic scaling for 8h-dotriacontane chains: running 0 intramolecular modes. The fact that these frequencies
averages of the atomic pressugeay solid curvg and the molecu- ~ are clearly visible in the power spectréw) corresponding
lar pressurdblack dashed curyeas a function of time. Each point to atomic scaling and practically absent in the corresponding
in the figure corresponds to an average over 20 ps. spectrum for molecular scaling shows that the atomic
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ATOMIC and MOLECULAR PRESSURES POWER SPECTRA [, . ,(®)
256 n—decanes, ATOMIC SCALING 80 n-dotriacorllq"inesex
T 2.0 T T T T T T T
30 atomic pressure P*" atomic scaling
molecular pressure P™' 18

- --- molecular scaling
25

20 - !

pressure [atm]
l(®) [sec kJ/mol]
5

i

0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0
wave numbers [cm™]

50 ‘ 100 150 200 250 300
simulation time [ps]

FIG. 10. Atomic_scaling for 25®-Qecane chains: Running av- FIG. 12. Power spectra ofP{,q— Pey)V obtained from the
erages of the atomic pressuigray solid curv¢ and the molecular  gimjations of 8t-dotriacontane chains using atomic scaligeay
pressure(black dashed curyeas a function of time. Each point in  ¢gjig curvé and molecular scalingplack dashed curye
the figure corresponds to an average over 20 ps.

. . 2
barostat couples to intramolecular motions. A common d V~ 1

feature of all power spectra is the large low-frequency a2 KVeqlWy
peak around wave numbers 7 ¢h (decanes and 13

cm™ - (dotriacontanes no matter which scaling method is where k= —(0V/19P)|eq/Veq is the (isothermal compress-

applied. The low-frequency peaks can be assigned to thgi The frequency of this oscillator i = 1/\kVe Wy,
compressibility of the systems afalkanes, which can be g frequency can also be found in the time evolution of the
understood as followg25]. The equation of motion for the quantityA= (P;.;— Pe,)V, whose power spectra are shown
volume can be written &84V~ P;,s;— Pex;, When the Nose in Figs. 11 and 12. For the decanes the experimental com-
thermostating for the piston momentum is neglected. Expressibility is kx=12.34x10"%° Pa ! at 303 K and 1 atm
panding the volume around its equilibrium val\ig, asV ~ [26]. Inserting the value for the piston mas#y,=(f
=Veqt (VI9P)|e(P—Pex)+ -+ and solving for P +1)kgT[75/V(0)?*]~0.602< 10" kg/m’ yields approxi-

— Py Shows that the equation of motion for the volume canmately a frequency ofv=wqy/27=2.0x10%s™ 1, corre-

be formulated approximately as a harmonic oscillator equasponding to a wave number of 6.7Ch The large low-
tion frequency peak(for the atomic scaling as well as for the

(V - Veq) ) (42)

2
HEAT DISSIPATION SPECTRA ® I((Pinst'Pext)V)(w)

POWER SPECTRA , ., ,(0)

80 n-dotriacontanes

nst " ext
256 n-decane 70.0 T T .
' ‘ ' ‘ atomic scaling
1.4 atomic scaling 1 60.0 | - - - - molecular scaling
---- molecular scaling :
12+ Bl
_ 500 -
5
£
=0 | 2 400t
208 Ff 1 ]
3 8 300 |
ﬂ‘ e~
= E
3 0.6 - =
= “8 200 f
0.4 - ,
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02+ 1 bl [og it i
00 L s " oLl PN A3 - INRRANAMLAONA Y ik i "
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0.0 L T S NPRTR TP PeTIN N 8]
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FIG. 13. Heat dissipation spectus?l(pmsl_ Po)V corresponding
FIG. 11. Power spectra ofP(,s;— Pex)V Obtained from the to the power spectra in Fig. 12 obtained from the simulations of 80
simulations of 2561-decane chains using atomic scaliiggay solid  n-dotriacontane chains using atomic scaliggay solid curve and
curve and molecular scalin¢black dashed curye molecular scalingblack dashed curye
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AVERAGED SPECTRAL DENSITY [y (®) the contribution of the intramolecular “breathing motions”
80 n-dotriacontanes & to the power spectrum obtained from tf@@artesian velocity
%0 ' ' autocorrelation function, which is observed by neutron scat-

atomic scaling
- - molecular scaling

tering. The spectral densitieGveraged over all 8n-
dotriacontane chainof ngw are depicted in Fig. 14. The
maximum position of the spectrum at approximately
70cm ! confirms that this frequency range corresponds
really to the intramolecular breathing motions in the simula-
tions, whether the atomic or the molecular scaling method is
used. It is also clear from the figure that this frequency is
more sharply peaked for the atomic scaling method. By com-
parison with Fig. 12, we conclude that the atomic scaling
method couples the pressure really to these intramolecular
breathing modes, while the molecular scaling method does
not. As a consequence, intramolecular stress is less effi-
ciently dissipated if the molecular scaling method is applied
leading to the discrepancy between atomic and molecular
pressure for the long chains described above. It seems rea-
FIG. 14. Averaged power spectra of the time derivative of thesonable that the low-frequency breathing modes are in turn
radius of gyration of the 8@-dotriacontane chains. The averaging responsible for the extremely slow relaxation of energies
is over the 80 power spectra of the single molecules. The gray solidince conformational rearrangements are coupled to these
curve corresponds to atomic scaling and the black dashed curvgotions. For the shorterdecanes the intramolecular modes
corresponds to molecular scaling. correspond to considerably higher frequencies and corre-
spondingly motions with smaller amplitudes. Although Fig.
molecular scalingin the power spectra in Fig. 11 appears at11 shows clearly that the atomic barostat couples also to
wave number approximately equal to 7 thp showing that  these motions, they are probably less important for the relax-
the experimental compressibility is reproduced by the simuation of the system since they have only a small amplitude. It
lations. For the dotriacontanes we found no data for the elass important to let a large number of low-frequency—large-
tic constants in the literature, but it is plausible that the pealamplitude motions participate in the relaxation process.
found in the power spectra at approximately 13 ¢nis re-
lated to the elastic constants too. However, these “elastic”
low-frequency peaks do not significantly contribute to the V. SUMMARY AND CONCLUSION

rate of energy dissipation since the rate of energy dissipation We presented a comparison of two different constant
is proportional to the power spectrum weighted . Fig- pressure simulation techniques for molecular systems subject
ure 13 shows the “heat dissipation spectra” for the longtg geometrical constraints. The simulations showed that the
chains corresponding to the power spectfag. 12, al-  atomic scaling method leads to an efficient relaxation of in-
though, at least for the molecular scaling method, no coMyamolecular stress, in particular for systems consisting of
plete equilibrium was established. As can be seen from Figgrge molecules. Differences from the standard center-of-
13, the(70-80-cm™* peaks contribute strongly to the rate of mass scaling procedure to adjust the pressure were found to
stress dissipation in the case of atomic scaling for the longe |ess pronounced for a liquid of relatively smadtiecanes.
chains. In Ref.[28] these frequencies were assigned topowever, for the longer 32 carbon chains pressure adjust-
“accordion-like” longitudinal motions of the individual ment by center-of-mass scaling did not work at all. While the
chains performing inelastic neutron scattering experimentgtomic scaling procedure is able to adjust both pressures, the
on then-dotriacontanes, with the momentum transfer vectorytomic pressure and the molecular pressure, to the prescribed
oriented parallel and perpendicular to the chain axis. SUC@quiIibrium value of 1 atm, the molecular scaling method
motions are responsible for fluctuations of the molecular vol+,jis to do so. An explanation for these findings was provided
ume. To confirm that these intramolecular stretching motion%y an analysis of the frequency-dependent heat dissipation
are reproduced by the simulations we calculated the powgt\echanisms. We showed that especially large concerted
spectra of the time derivatives of the radius of gyration of the(low—frequency motions determine the time scale for in-
molecules. The radius of gyration of molecutds given by  ramolecular relaxation processes. The simulated low-
frequent breathing modes of tinedotriacontane chains were

— found to be in good agreement with inelastic neutron scatter-

ayry=NTLT, (43)  ing experiments, where the frequency range 70—80 'tm
was assigned to accordion-like motions of the chains. These

_ motions were shown to be essential for the relaxation process
wherer , collects all the 3 relative coordinates of molecule in the system. We believe that our findings are also of im-
v with respect to its center of mass. Thus the correspondingortance for biomolecular simulations, where often one
- single protein or at most a few of them are simulated in water
- as solvent. It is certainly desirable that the intramolecular
=r,/Rgyr,, is the I-dimensional unit vector in radial direc- protein motion is on equal footing with respect to pressure
tion. The power spectrum &,,, , is a plausible measure for control, as in reality.

30.0

25.0 -

20.0 -

15.0 |

10.0 [

SPECTRAL DENSITY (o) [arbitrary units]

5.0

200.0

0.0 50.0 100.0
wave numbers [cm’]

R

. I : AT L N
time derivative reads ngr,y—engrry, where &Ry,
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APPENDIX vector that is orthogonal to the constraint surface. It should
1. Constraint NPT algorithm be noted that thg, are only abbreviations that stand for
g 2
In the following we sketch a numerical algorithm suitable B,= Pv_ 2py 9

for integrating the equations of motioi8)—(7). This con- © O\ BWWV L gw2v2) T
cerns particularly the special features of the equations of mo- 5
tion discussed in Sec. IlA 1. The algorithm is based on the . Pv - vy - v, (A5)
velocity version of the Verlet algorithm, which may be for- 3WVVg“ Ha 3WyWV ofa-
mulated as

1, is the Lagrangian multiplier associated with the position
constraintsz; =X ,u,dc%/dr' andn, denotes the degree of
homogeneity of the constraint gradieat e.g., bond con-
straints whose gradients are of the foamx®/gr(®V=r(«1)
A —r(@2) correspond tm,= 1. Instead of constructing an ana-
X(t+A)=x(t)+ =[X(t) +X(t+A)]+O(A3). (A2) lIytical formula for theg, that appear in Eq(A5), the com-
2 plete expression foB, can be determined numerically in
such a way that the constraints are exactly fulfilled up to a
An advantage of the velocity Verlet algorithm is that both predefined tolerance. Having established the equation' for
coordinates and velocities are available at the same time. lye can sketch the algorithm for integrating the equations of
the framework of the velocity Verlet integrator constraints motion (3)—(7) in eight steps, supposing the following quan-
are mostly treated using tRATTLE schemef27]. Here we ijties are available at time input arrays
apply a slightly different variant of th&ATTLE algorithm

2
X(t+A)=x(t)+A X(t)+ %&k(t) +0(A%, (A1)

suitable for the special requirements of the atomic scaling VO.r,fr(®),  r®=r®-r. (),
procedure discussed in Sec. IIA1. For the following it is o
helpful to write down a second-order differential equation L=—-M"1> ga(t)&i,

for the Cartesian coordinates'r"y (y=1,...K;i @ ar
=1,...,3). (The indexy, which labels the molecules, will 90

be skipped in the following to keep the formulas short. When

we refeF; to single coordir?ates, eizj‘., the mass of the cor- p(t),pv(t),g(t),z(t)—g 7““(0'

responding atom will be denoted &s.) From the equations

of motion (3)—(7) we obtain Pt ={(p"™™M " Ip)(t) +rT(t)[f(t)+z(t)]}/3V(1).
dlv( 1 Py b Determine first positionlike quantities at the new titne
=Gl TS e [t Ay A - , »
dt |3V M or' m (i) Compute the time integral of the Nostoover friction

2
where theg, are Lagrangian multipliers which are the solu- fHAdt/g(t/): ftdt’g(t’)+A§(t)+ A
tions of the linear system of equatiodgvl ~*ATg=—Ar. 0 0 2Ws
From Eq.(A3) it is already clear that the time derivatives of

the Lagrangian multiplierg, are needed too. However, in- p\z,(t)

stead of constructing an equation of motion for theit is T Wy —(f+1)kgT .

easier to circumvent this problem by reformulating the accel-
erationsr'. After some algebrésee Sec. 2 of the Appendix

we find B py(t) A% .
VIt 8)=V(0) + A0+ 5epu(t)

('™~ 1p) (1)

(i) Compute the volume

3WWV w2 ma ot T where  py(t)=P{i5(t) = Pexi— £(t)py(t).
(iii) Compute the positions
Py o

sl fmip - oS 0,3 S

m; oW2Vv2E T arigrk i i pi(H)  pu(t)

r'(t+A)=r'(t)+A m +3WVV(t)r”(t)
. 1 do”
=i > — B, (A4) A2 A g
i a

ar

The last equality in Eq(A4) defines the auxiliary quantities \here g,(t) can be determined similarly as in the well-
r*', which are useful in describing the algorithml, =r' known SHAKE algorithm[13]. We recall that the3, are only
—r=— (Um) =,9,(dc?/dr') is the part of the position convenient abbreviations. They cannot be used in propagat-
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ing the momenta. The constraint forcesz(t) A
=3 ua(t) (9o or') are determined by the,(t) and not 5(”+1)(I+A)=§(t+A/2)+m (P TM~pM)(t+4)
by B,(t). It is therefore necessary to find another way to S

obtain thew ,(t) for propagating the particle momeraand (v)2

! . py c(t+A)
the momentunp, . However, since we have not determined + —(f+1)kgT]|,
numerical estimates for,(t) by controlling all positions Wy

constraints in stepiii), we cannot use the standardTTLE
integrator. An important observation in tRaTTLE integra- p§”+l>(t+A)=pi(t+A/2)
tion scheme for constrained systems is that the local error
made by determining only numerical estimates for the La-
grangian multipliersu,(t) is of the same order in the time

A
+ EI fi(t+A) = D(t+A)p{"(t+A)
stepA as already inherent in the velocity Verlet algorithm. In

this appendix we prove that the alternative proposed here p{,V)(t+A) )
[see the comment below stéy)] fulfills that condition too. T 3WV(ELA)| P (t+4)

(iv) Use the positions to compute forck& + A) and the
contribution from the potential forces to the atomic virial as Pa® p(t+A)
Sifi-ri=Sifi-rll', where rfi' denotes the three- +2 ga(t+A) — ]
dimensional nearest image distance vector between atom ror M
and atom;.

(v) Compute the parallel projectiomg(t+ A) or, equiva- (V)(t+A),

lently, the multipliersg, in r (t+A)=(r—r)(t+A)=
—3,9,(t+AYM L (a0% ar) (t+A). The determination of
the g, (t+A) can be performed numerically by the same
routine that is used in theaTTLE algorithm[27] to fulfill
velocity constraints of the formAr =0O. Here the constraints
read insteadhr,=Ar —Ar , =0O; compare Eq(11).

(vi) Determine the momenta(t+A), py(t+A), and
{(t+A) iteratively: Compute firsp(t+A/2), py(t+A/2),
and {(t+A/2), which are only propagated half a time step
A/2 and can be used to determine a zeroth approximation forp<v>atm(t+A)_
the full time step propagated quantities 3V(t+A)

P (t+A)=p;(t)+A[pi(t+A2) —pi(D)],

Pi Pi 2| i Pj —3WVV(t)

where ,u(”)(HA) are the Lagrangian multipliers corre-
sponding to thevth approximation to the constraint forces
Z"(t+A). In each iteration these estimates can be deter-
mined using a routine as described in HrerTLE algorithm.
Determine an estimate for the atomic pressure at titnaA:

(p(V+1)TM—1p(V+1))(t+A)

+2 r(t+HA)[Fi(t+A) + 2 (t+A)]T,

Py Y (t+A) =py(t+A2)+ = [— Pextt Pl ™(t+A)

o py(t)
x| i)+ D ga(t) — ——| t.
(p'( ) ; 9l )ar'ark My —Y(t+A)p(t+A)].
It should be noted that in the case of bond constraints only
the second derivatives’s/dr'or are simply constants:  The respective estimate for the constraint vitia; - Z" can
) be computed from the estimates for the Lagrange multipliers
py (t+A)=py(t) +A[py(t+A72) = py(t)], w” as3, ul"d*?, whered® is the fixed bond length in
A or=[(rleV—rl®2)2_ge2)/2=0.
Pv(t+A/2)=py() + 5 [Pinsi(t) = Pexi— {(HPV(D], (viii) Store the quantities at tinter A in the input arrays.

Store the actual time. Sét>t+A. Go to(i).
{O(t+A)=¢(t) +ALL(t+A2) = ¢(D)],

2. Validity of Eq. (A4)

In this section we prove the validity of E¢A4) for the
particle accelerations in the case of atomic scaling. Starting

A
{tHAR)={()+ 5 ((pTM p)(t)

+ &(t) (f+ 1)kBT)- with Eq. (A3) we find
. 2
As already mentioned, the constraint forcgét) and the piz 1 /&_ Py 2
constraint virial at timet were not determined in steffi). 3W\,\ Vw2 mI o 9a
They had to be determined in the previous time step cycle
t—A—t as described irvii). If there is no previous cycle, Py

13 B T 2 B

. . . . +
i.e., the program runs the first time step, one may start with 3WVV ~ M oy ar ~ m,

the approximatioru ,(0)=8,(0).
(vii) Start iterationsy=0, . . . Vmax: (A7)
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Using the equation of motion forK [Eq. (3)], the term containing the second derivatives of the constraints can be reformulated

as
2 o
o,
) g_az_. ik
o mi T Oridr
_ ya Tt 8*0* pi 4PV Zgan do™ e 9’0" ok
“F M Aridrkmg | 3WyV * Or L oriork L
o (A8)
Za,k %garémrk
|
where n, is the degree of homogeneity of the constraint Py P py
gradient numberx. In the final expression for; the first —{pi— 3W V] Pi +2k gamm— .
term in Eq.(A8) drops out since it appears with opposite “ rort Tk (A12)

sign in the expression fqy, /m; in Eq. (A7). Using Eq.(A8),
the equations of motiofB) and(4) for r; andp; in EqQ. (A7),
and reordering of the terms yields E@\4). All coefficients
in front of 9o“/ar' are collected in the abbreviations, as
described in Eq(A5).

3. Local error

Following Andersen’s arguments [i@7] quite closely, we

In Eq. (A9) the help quantityr*' is completely known at
timet. When instead of the numerical estimafgsthe exact
values at time were used in Eq(A9) the geometrical con-
straints would be possibly violated due to local errors in the
velocity Verlet integrator. At worst, this violation would be
of O(A®). Since the numerical estimatgs, are approxima-

prove here that the local error of the coordinates and of théions for the exact values that are multiplied By in Eq.
velocities for the proposed constraint algorithm is of the(A9) and since they guarantee that the constraints are exactly
same orden® as is the error principally inherent in the ve- fulfilled, they deviate from the exact values ©fA). There-
locity version of the Verlet algorithm. Concentrating on the fore, the possible errors in the positiorit+A) are still of

Cartesian coordinates, their parallel projections; , and the

momentap; of the molecular system, our algorithm can be

summarized as

pi(t) (t) pv(t)

Fi(t+A)=ri(t) +A| —— -t WD ri(t)

A2, A2

EETMURE= 1), (A9)

it a)=rt+ )+ 3 %&U +A),
(A10)

& o
Pt 8)=p 1)+ 5| Pt OEDWHRUEESE
+pi(

(A11)

wherer*! is the abbreviation introduced in EGA4) and p¥
stands for

O(A®).

Since the parallel projection in EGAL0) is a purely geo-
metrical operation that is independent of the time step, the
multipliersg,(t+A) involve the same local error as the po-
sitions themselves, namel@(A%). Thus, if the momenta
are correct up t@(A®) (this will be shown neyt the ve-
locities will also involve an error of the same order. If the
time step is small enough, it can be ensured that the iterative
procedure in stepvii) of the algorithm will converge, such
that the final iteration will give a propagation of the mo-
menta that is equivalent to the formulad11). Thus p} (t)
andp’ (t+A) in Eq. (A11) can be assumed to be correct up
to a local error of0(A3). If u,(t+A) were replaced by the
exact(but unknown Lagrangian multipliers the momentum
constraints would be possibly violated and the local error
would be of O(A%). We can therefore conclude that the
w,(t+A) need to deviate from the exact values®§A?) in
order to fulfill the momentum constraints exactly since they
are multiplied by a factor proportional tv. The same holds
consequently foj,(t) determined in the previous time step.
These arguments prove that no larger local error than already
inherent in the velocity Verlet algorithm will be introduced
when the proposed integration schefje-(viii) is used. It is
worth noting that the estimates for the Lagrangian multipli-
ersu, are correct up to an err@(A?). This is the minimal
needed accuracy, since the Lagrangian multipliers enter di-
rectly the atomic pressure. If the Lagrangian multipliers were
obtained with lower accuracy the local error in the propaga-
tion of py(t+A)=py(t+AR2)+AR{PAN(t+A)—Pey
—{(t+A)py(t+A)} would be larger than the inherent local
error of the velocity Verlet integrator.
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